Telegram Group & Telegram Channel
Language Agents as Optimizable Graphs [2024] - обучаем надстройку над LLM

Недавно я писал о том, что какая-то большая и сложная надстройка над LLM может дать какой-нибудь интересный результат. Нечто такое из себя представляет FunSearch, использующий LLM как генератор мутаций программ на питоне. Сегодня посмотрим на работу, в которой надстройка над LLM оптимизируется для высокой производительности на классе задач / бенчмарке. Сразу скажу - не фанат конкретно этой схемы, но направление мысли здесь задаётся неплохое.

Определим языкового агента как ациклический направленный граф. В нём вершины это различные вычислительные элементы - запросы к LLM, вызовы какого-нибудь API, использование инструмента и т.д. Соединены они между собой рёбрами, обозначающими, идёт ли выход из одной вершины на вход другой. В данной статье у нас заранее задаётся множество вершин, причём у LLM-вершин есть описание того, что именно они должны делать.

Итак, мы хотели бы построить граф, набирающий как можно больше в какой-нибудь задаче, например, бенчмарке GAIA. Оптимизировать можно 2 вещи - набор рёбер и промпты каждой вершины.

1) Рёбра оптимизируем с помощью REINFORCE. Граф генерируется случайно, и вероятность каждого ребра задаётся вероятностью-параметром p. С помощью REINFORCE по этим вероятностям можно оптимизировать недифференцируемую итоговую производительность графа на задаче.
2) Промпты у вершин оптимизируется через ORPO. Для каждой вершины оптимизация независима. Это имеет смысл в данном случае, т.к. функция вершины определена заранее и подаётся на вход оптимизатору.

Графы обучаются не с нуля, их "инициализируют" какой-то известной схемой (например, несколько Tree of Thoughts) и дальше "дообучают". Нельзя сказать, что у агента есть большой простор для оптимизации, однако, это уже лучше, чем зафиксированные вручную схемы. Ждём более хитрых и гибких параметризаций такого языкового агента, в которых набор вершин тоже будет оптимизироваться, а назначение каждой отдельной вершины не будет задано заранее.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/167
Create:
Last Update:

Language Agents as Optimizable Graphs [2024] - обучаем надстройку над LLM

Недавно я писал о том, что какая-то большая и сложная надстройка над LLM может дать какой-нибудь интересный результат. Нечто такое из себя представляет FunSearch, использующий LLM как генератор мутаций программ на питоне. Сегодня посмотрим на работу, в которой надстройка над LLM оптимизируется для высокой производительности на классе задач / бенчмарке. Сразу скажу - не фанат конкретно этой схемы, но направление мысли здесь задаётся неплохое.

Определим языкового агента как ациклический направленный граф. В нём вершины это различные вычислительные элементы - запросы к LLM, вызовы какого-нибудь API, использование инструмента и т.д. Соединены они между собой рёбрами, обозначающими, идёт ли выход из одной вершины на вход другой. В данной статье у нас заранее задаётся множество вершин, причём у LLM-вершин есть описание того, что именно они должны делать.

Итак, мы хотели бы построить граф, набирающий как можно больше в какой-нибудь задаче, например, бенчмарке GAIA. Оптимизировать можно 2 вещи - набор рёбер и промпты каждой вершины.

1) Рёбра оптимизируем с помощью REINFORCE. Граф генерируется случайно, и вероятность каждого ребра задаётся вероятностью-параметром p. С помощью REINFORCE по этим вероятностям можно оптимизировать недифференцируемую итоговую производительность графа на задаче.
2) Промпты у вершин оптимизируется через ORPO. Для каждой вершины оптимизация независима. Это имеет смысл в данном случае, т.к. функция вершины определена заранее и подаётся на вход оптимизатору.

Графы обучаются не с нуля, их "инициализируют" какой-то известной схемой (например, несколько Tree of Thoughts) и дальше "дообучают". Нельзя сказать, что у агента есть большой простор для оптимизации, однако, это уже лучше, чем зафиксированные вручную схемы. Ждём более хитрых и гибких параметризаций такого языкового агента, в которых набор вершин тоже будет оптимизироваться, а назначение каждой отдельной вершины не будет задано заранее.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/167

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Telegram hopes to raise $1bn with a convertible bond private placement

The super secure UAE-based Telegram messenger service, developed by Russian-born software icon Pavel Durov, is looking to raise $1bn through a bond placement to a limited number of investors from Russia, Europe, Asia and the Middle East, the Kommersant daily reported citing unnamed sources on February 18, 2021.The issue reportedly comprises exchange bonds that could be converted into equity in the messaging service that is currently 100% owned by Durov and his brother Nikolai.Kommersant reports that the price of the conversion would be at a 10% discount to a potential IPO should it happen within five years.The minimum bond placement is said to be set at $50mn, but could be lowered to $10mn. Five-year bonds could carry an annual coupon of 7-8%.

Telegram auto-delete message, expiring invites, and more

elegram is updating its messaging app with options for auto-deleting messages, expiring invite links, and new unlimited groups, the company shared in a blog post. Much like Signal, Telegram received a burst of new users in the confusion over WhatsApp’s privacy policy and now the company is adopting features that were already part of its competitors’ apps, features which offer more security and privacy. Auto-deleting messages were already possible in Telegram’s encrypted Secret Chats, but this new update for iOS and Android adds the option to make messages disappear in any kind of chat. Auto-delete can be enabled inside of chats, and set to delete either 24 hours or seven days after messages are sent. Auto-delete won’t remove every message though; if a message was sent before the feature was turned on, it’ll stick around. Telegram’s competitors have had similar features: WhatsApp introduced a feature in 2020 and Signal has had disappearing messages since at least 2016.

Knowledge Accumulator from ca


Telegram Knowledge Accumulator
FROM USA